
1 SEPTEMBER 2002 2547N O T E S A N D C O R R E S P O N D E N C E

q 2002 American Meteorological Society

NOTES AND CORRESPONDENCE

Detection of Undocumented Changepoints: A Revision of
the Two-Phase Regression Model

ROBERT LUND AND JAXK REEVES

Department of Statistics, University of Georgia, Athens, Georgia

5 November 2001 and 25 March 2002

ABSTRACT

Changepoints (inhomogeneities) are present in many climatic time series. Changepoints are physically plausible
whenever a station location is moved, a recording instrument is changed, a new method of data collection is
employed, an observer changes, etc. If the time of the changepoint is known, it is usually a straightforward task
to adjust the series for the inhomogeneity. However, an undocumented changepoint time greatly complicates
the analysis. This paper examines detection and adjustment of climatic series for undocumented changepoint
times, primarily from single site data. The two-phase regression model techniques currently used are demonstrated
to be biased toward the conclusion of an excessive number of unobserved changepoint times. A simple and
easily applicable revision of this statistical method is introduced.

1. Introduction

Changepoints (discontinuities, inhomogeneities) are
a ubiquitous feature of climatic series. Changepoints can
arise from changes in recording instruments, station lo-
cation moves, etc. Figure 1 of Jones et al. (1986) and
Fig. 7 of Vincent (1998) show mean shifts in observed
temperatures that are attributable to changepoints.

Our definition of a changepoint is a time where the
mean of the series first undergoes a structural pattern
change. This change may or may not induce a discon-
tinuity in mean series values, but there is some pattern
change (e.g., series trend slopes and/or the location pa-
rameters of the series could shift). We focus on chan-
gepoints in mean values only; variance changepoints,
or more general structural changes in the marginal dis-
tributions of the series are not considered.

Changepoints can substantially alter conclusions
made from climatic series. For example, Lund et al.
(2001) show that changepoint information is the single
most important factor for obtaining an accurate estimate
of the linear temperature change rate for a fixed U.S.
station. Specifically, it is not unusual for a U.S. tem-
perature recording station to experience four or more
changepoints over a century of operation. As a linear
change rate is typically on the order of 1 or 2 8C cen-
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tury21, and each changepoint can induce a mean shift
of a few degrees Celsius, even a small number of chan-
gepoints can seriously corrupt the estimation of a linear
trend. Figure 1 illustrates the idea geometrically, de-
picting a series of length 1200 that experienced a single
changepoint with a mean shift of 2.08C at time 600. The
true linear trend slope in this data is 21.08C century21;
the solid and broken lines represent least squares fitted
lines to the data. Observe the differences in trend es-
timates: 1.8948C century21 when the changepoint is ig-
nored and 20.9648C century21 when the changepoint
is accounted for. Overall, one can appreciate the criti-
cality of the changepoint issue.

The climatic literature on changepoints is by now
extensive (cf. Thompson 1984; Solow 1987; Karl and
Williams 1987; Gullet et al. 1991; Rhoades and Salinger
1993; Easterling and Peterson 1995; Vincent 1998). The
statistical literature is also vast, with Page (1955), Kan-
der and Zacks (1966), Hinkley (1969, 1971), Brown et
al. (1975), Hawkins (1977), and Chen and Gupta (2000)
composing a prominent historical sample.

In many cases, the time of the changepoint(s) is (are)
known. The move of a temperature recording station,
for example, is revealed from changes in the station
longitude, latitude, or elevation records (station histories
or metadata). Station histories, however, are notoriously
incomplete, if they even exist. Hence, not all change-
point times are documented. An undocumented chan-
gepoint may be visually evident from a time series plot
of the data in question. Still, many situations arise where
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FIG. 1. Effect of changepoints on trend estimation.

the existence of a changepoint is debatable. This paper
presents a revision of the two-phase linear regression
test for changepoint detection at an undocumented time.

2. An Fmax test statistic

We start with the simple two-phase linear regression
scheme for a climatic series {Xt} considered by Solow
(1987), Easterling and Peterson (1995), and Vincent
(1998; among others). This model can be written in the
form:

m 1 a t 1 e , 1 # t # c1 1 tX 5 (2.1)t 5m 1 a t 1 e , c , t # n,2 2 t

where {e t} is mean zero independent random error with
a constant variance.

The model in (2.1) is viewed as a classic simple linear
regression that allows for two phases. This allows for
both step- (m1 ± m2) and trend- (a1 ± a2) type chan-
gepoints. Specifically, the time c is called a changepoint
in (2.1) if m1 ± m2 and/or a1 ± a2. In most cases, there
will be a discontinuity in the mean series values at the
changepoint time c, but this need not always be so (Fig.
10 in section 5 gives a quadratic-based example where
the changepoint represents more of a slowing of rate of
increase than a discontinuity).

A good changepoint detection method will detect both
step- and trend-type changepoints. Of course, changes
in trend slopes could be rooted in true climate change,
station relocations, urban heat effects, etc. In general,
we will not attempt to assign cause to every found chan-
gepoint. Also, step- and trend-type changepoints cannot
be unconfounded in general. One can, however, get a
good feeling for whether the step- or trend-type chan-
gepoint dominates by plotting the estimated mean re-
sponse against the data (cf. Figs. 3 and 10 below).

If a time c ∈ {2, . . . , n 2 1} is known to be the
only changepoint time a priori, then least squares es-
timates of the trend parameters in (2.1) are

c

(t 2 t )(X 2 X )O 1 t 1
t51â 5 and1 c

2(t 2 t )O 1
t51

n

(t 2 t )(X 2 X )O 2 t 2
t5c11â 5 , (2.2)2 n

2(t 2 t )O 2
t5c11

where 1 5 c21 Xt and 2 5 (n 2 c)21 Xt
c nX S X St51 t5c11

are the average series values before and after time c,
respectively; and 1 5 c21 t 5 (c 1 1)/2 and 2 5ct S tt51

(n 2 c)21 t 5 (n 1 c 1 1)/2 are the average timenSt5c11

observations before and after time c, respectively. Least
squares estimates of the location parameters m1 and m2

in (2.1) are

m̂ 5 X 2 â t and m̂ 5 X 2 â t .1 1 1 1 2 2 2 2 (2.3)

The denominators in (2.2) can be explicitly evaluated as

c c(c 1 1)(c 2 1)
2(t 2 t ) 5 andO 1 12t51

n (n 2 c)(n 2 c 1 1)(n 2 c 2 1)
2(t 2 t ) 5 . (2.4)O 2 12t5c11

To test a null hypothesis of no changepoints versus
an alternative of an undocumented changepoint, a good
test statistic must be developed. Under the null hypoth-
esis, the regression parameters during the two phases
must agree: a1 5 a2 and m1 5 m2. In this case, 1 2â

2 and 1 2 2 should be statistically close to zero forâ m̂ m̂
each c ∈ {1, . . ., n}. Rescaling this to a regression F
statistic merely states that

(SSE 2 SSE )/2Red FullF 5 (2.5)c SSE /(n 2 4)Full

should be small for each c ∈ {1, . . ., n} when there is
no changepoint. In (2.5), SSEFull is the ‘‘full model’’
sum of squared errors computed from

c

2SSE 5 (X 2 m̂ 2 â t)OFull t 1 1
t51

n

21 (X 2 m̂ 2 â t) (2.6)O t 2 2
t5c11

and SSERed is the ‘‘reduced model’’ sum of squared
errors

n

2SSE 5 (X 2 m̂ 2 â t) , (2.7)ORed t Red Red
t51

where Red and Red are estimated under the constraintsm̂ â
m1 5 m2 5 mRed and a1 5 a2 5 aRed:
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FIG. 2. The F statistics for Fig. 1 data.

TABLE 1. The Fmax and F3,n24 percentiles.

n Fmax,0.90 F3,n24,0.90 Fmax,0.95 F3,n24,0.95 Fmax,0.99 F3,n24,0.99

10
25
50
75

100
200

8.39
6.10
5.91
5.94
5.99
6.14

3.29
2.36
2.20
2.16
2.14
2.12

11.56
7.37
6.92
6.88
6.91
7.01

4.76
3.07
2.81
2.73
2.70
2.65

22.38
10.55

9.31
9.07
8.98
8.96

9.78
4.87
4.24
4.07
3.99
3.88

300
400
500
750

1000
2500
5000

6.26
6.33
6.39
6.53
6.57
6.79
6.98

2.10
2.10
2.09
2.09
2.09
2.09
2.08

7.11
7.18
7.24
7.37
7.42
7.65
7.85

2.64
2.63
2.62
2.62
2.61
2.61
2.61

9.03
9.08
9.10
9.22
9.26
9.51
9.68

3.85
3.83
3.82
3.81
3.80
3.79
3.79

n

(X 2 X )tO t
t51â 5 12 andRed n(n 1 1)(n 2 1)
n

21m̂ 5 n (X 2 â t). (2.8)ORed t Red
t51

At the boundaries c 5 1 and c 5 n, SSEFull is com-
puted as follows. For c 5 1, the first summation in (2.6)
is interpreted as zero and the second summation rep-
resents the sum of squared errors after a line is fitted
to X2, . . ., Xn. At c 5 n, the second sum in (2.6) is zero
and the first is the sum of squared errors of a line fitted
to X1, . . ., Xn21.

Now, if a changepoint is present at time c, Fc, and
hence max1#c#n Fc, should be large (statistically). Fur-
thermore, max1#c#n Fc will be small when Fc is small
for each c ∈ {1, . . ., n}, as is the case (statistically)
under the null hypothesis. Hence, the existence of an
undocumented changepoint is concluded when

F 5 max F (2.9)max c
1#c#n

is too large to be attributed to chance variation. The
time of the most prominent changepoint is estimated as
the argument(s) c that maximize(s) Fc. Figure 2 plots
values of Fc for the data in Fig. 1. The maximum F
statistic is prominent at time 600, the true time of the
changepoint, with an Fmax statistic of 134.56.

To quantify how large Fmax should be to conclude that
an undocumented changepoint exists, the distribution of
Fmax under the null hypothesis must be derived. This is
where mistakes have been propagated in the literature.
Under the null hypothesis and Gaussian errors {e t}, Fc

has an F distribution with 2 numerator degrees of free-
dom and n 2 4 denominator degrees of freedom for
each c. Hence, under the null hypothesis, Fmax behaves
as the maximum of F statistics. However, the Fcs are
not independent; rather, Fc and Fc21 are positively cor-
related (similar) for a fixed c. This dependence greatly
complicates the analysis.

Hinkley (1969, 1971) examined the above issue and
reported that the null hypothesis distribution of Fmax was,

under the constraint that the two regression lines meet
at the changepoint time (unrealistic in this setup), ap-
proximately an F3,n24 distribution; that is, an F distri-
bution with 3 numerator degrees of freedom and n 2
4 denominator degrees of freedom. Hinkley likely rea-
soned that c is unknown and could be regarded as a
third free parameter under the null, thereby adding 1
numerator degree of freedom. Solow (1987) applied
Hinkley’s distributional claim in the climate literature
without reexamination of the issue. Easterling and Pe-
terson (1995) quoted Solow and dropped the ‘‘meeting
constraint’’ altogether. Vincent (1998) quoted Easterling
and Peterson (1995).

In the next section, we will compute the true percen-
tiles of the Fmax distribution under the null hypothesis
of no change. The comparisons show that the true dis-
tribution of Fmax is much larger (stochastically) than that
of the F3,n24 distribution. From a practical standpoint,
using an F3,n24 null hypothesis distribution leads to over-
estimation of the number of unobserved changepoints.
This has climatic repercussions. For example, adjusting
a temperature record for too many changepoints elim-
inates natural variability in the record and may make
insignificant anomalies appear significant.

3. The Fmax percentiles

It is difficult to derive the null hypothesis distribution
of Fmax mathematically. However, null hypothesis Fmax

percentiles (critical values) can easily be obtained via
simulation. One draw from the Fmax distribution under
the null hypothesis is obtained by simulating a time
series satisfying (2.1) with m1 5 m2 and a1 5 a2, and
then computing the Fmax statistic. It is worth noting that
the null hypothesis Fmax distribution does not depend on
the particular values of m1 and a1 (regression F statistics
are scale independent). This procedure is repeated many
times in a Monte Carlo sense; the result is a sample
from which the Fmax critical values can be very accu-
rately estimated.

Table 1 lists the 90th, 95th, and 99th percentiles of
the Fmax distribution as a function of the series length



2550 VOLUME 15J O U R N A L O F C L I M A T E

n and compares these values with the F3,n24 percentiles.
The Fmax percentiles were obtained by simulating 100 000
Fmax values for each series length n; 1 000 000 Fmax

values were in fact generated for all table entries with
n # 750. Such simulated percentiles are quite accurate;
in fact one standard error of estimation for each of the
Table 1 entries is bounded by 0.010. Generation of Table
1 took over one month on a Pentium personal computer.
The F3,n24 percentiles were obtained by inverting the
true F3,n24 cumulative distribution function.

Several comments about the Table 1 values are worth
making. First, the Fmax percentiles are at least twice as
large as their F3,n24 counterparts. Hence, use of the F3,n24

percentiles can cause a gross overestimation of the num-
ber of undocumented changepoints. Second, whereas the
(1 2 a) 3 100 percentiles of the Fmax distribution in-
crease for n $ 100, the (1 2 a) 3 100 percentiles of
the F3,n24 distribution actually decrease in n. In fact, 3
times the F3,n24 distribution converges to a chi-squared
distribution with 3 degrees of freedom as n → `. In
particular, limn→` F3,n24,0.95 5 2.60, whereas limn→`

Fmax,0.95 5 `. The above monotonicity and limiting prop-
erties mathematically demonstrate the inappropriateness
of the F3,n24 distribution for undocumented changepoint
detection.

For series lengths n that are not listed in Table 1, a
linear interpolation of the percentiles appears to work
reasonably well. Alternatively, we have fitted the curve

F̂ 5 3.5642max,0.95

4 ln[ln(n 2 4)]
1 2 ln[ln(n 2 4)] 1 1 ,5 6n 2 4

n $ 100, (3.1)

to the 95th percentiles in Table 1. This curve, whose
form is extracted from extreme value theory, fits the
percentiles reasonably well for large n; we do not rec-
ommend its application unless n $ 100.

Tracing the history of the Fmax versus F3,n24 issue, it
is clear that the asymptotic normality in Hinkley (1969,
1971) does not hold as claimed. Further error in the
methods is attributed to Easterling’s and Peterson’s
(1995) removal of Hinkley’s requirement that the re-
gression lines meet at the phase boundaries. Whereas
Easterling and Peterson (1995) also apply numerous sta-
tistical tests (t tests, Durbin–Watson, multiresponse per-
mutation, etc.) to candidate changepoint times, none of
these methods fundamentally accounts for the fact that
the changepoint time is unknown; hence, they should
not be expected to work well in general.

We conjecture that a reasonable approximating lim-
iting distribution of Fmax (as n → `) would involve the
Gumbel extreme value law:

2(x2a )/bn nPr[F # x] 5 exp{2[e ]},max (3.2)

for appropriately selected scaling constants an and bn.
Our conjecture is based on the fact that scaled maxima

of independent F statistics must converge to the Gumbel
distribution. The F statistics involved in (2.9) are very
dependent, so naive application of classic extreme value
results will be invalid. Nonetheless, from the extreme
value laws for dependent random sequences in Lead-
better et al. (1983), the dependence in Fc (as c varies)
does not appear (at first glance) strong enough to alter
the overall form of the limiting distribution. It would,
however, change the scaling constants an and bn. An-
other plausible form for the limit distribution of Fmax

would involve the supremum of a Brownian Bridge pro-
cess. Of course, with the Table 1 values and (3.1), there
is no practical reason to consider this issue further.

4. Extensions and limitations of the methods

The above methods were developed for single site
data, but they can easily accommodate reference series.
If a reference series {Rt} has a constant mean in time—
E[Rt] [ c for some constant c and all t—then one can
apply the above methods to the differenced series {Xt

2 Rt}. The changepoint times in {Xt} and {Xt 2 Rt}
will be identical. The assumption that E[Rt] has a con-
stant mean is important. For if {Xt} and {Rt} are ex-
periencing similar climate change, the trend slopes of
{Xt} and {Rt} will be approximately the same, and {Xt

2 Rt} will have no appreciable trend.
After a changepoint time is detected, it is a simple

matter to adjust the series for the changepoint. To put
both phases of the series on a common mean zero basis,
merely examine the ‘‘residuals’’ { } defined byX*t

X 2 m̂ 2 â t, 1 # t # ct 1 1X* 5 (4.1)t 5X 2 m̂ 2 â t, c , t # n.t 2 2

To convert all measurements to a current day basis,
examine { } defined byX**t

X 1 (m̂ 2 m̂ ) 1 (â 2 â )t, 1 # t # ct 2 1 2 1X** 5t 5X , c , t # n.t

(4.2)

The above analysis extends beyond the piecewise lin-
ear response form in (2.1). For a simpler example, the
piecewise constant regression model:

m 1 e , 1 # t # c1 tX 5 (4.3)t 5m 1 e , c , t # n,2 t

could be considered if one is sure there are no trends
in the series. In this case, the Fmax statistic in (2.9) would,
under the null hypothesis of no undocumented chan-
gepoint, behave as the maximum of n dependent F sta-
tistics with 1 numerator degree of freedom and n 2 2
denominator degrees of freedom. The 1 numerator de-
gree of freedom is due to the difference between pa-
rameter counts in full (two parameters) and reduced (one
parameter) models; 2 degrees of freedom are lost from
n total in the denominator from estimation of m1 and
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FIG. 3. Chula Vista annual temperatures. FIG. 5. Chula Vista annual residuals (with c 5 1975).

FIG. 4. Chula Vista annual F statistics. FIG. 6. Chula Vista annual residual F statistics.

m2. In this case, the Fmax statistic is the square of a tmax

statistic (cf. Hawkins 1977; Potter 1981; and Alexan-
dersson 1986 for the statistical and climate origins).

In the next section, we will have cause to examine a
series with the quadratic regression model:

2m 1 a t 1 b t 1 e , 1 # t # c1 1 1 tX 5 (4.4)t 25m 1 a t 1 b t 1 e , c , t # n,2 2 2 t

for the presence of undocumented changepoints. In this
case, the Fmax statistic would be distributed as the max-
imum of n-dependent F statistics each having 3 nu-
merator degrees of freedom and n 2 6 denominator
degrees of freedom. The 3 numerator degrees of free-
dom represent the difference between parameter counts
in full and reduced models; 6 degrees of freedom are
lost from n total in the denominator due to estimation
of the six regression parameters in the full model in
(4.4).

Vincent (1998) presents examples where indicator
structured response forms are appropriate for E[Xt].
Whereas quadratic and higher-order polynomial re-
sponse functions for E[Xt] do not typically admit ex-
plicit parameter estimates such as those in (2.2) and
(2.3), sum of squared errors are easily computed by
writing the regression in a general linear model form.

This is all that is needed to compute the F statistics in
(2.5).

Eventual application of the above methods to monthly
and more general periodic series is envisioned (see also
Gullet et al. 1991). For such pursuits, forms for E[Xt]
with a periodic component would be more appropriate.
General problems with periodic time series in clima-
tology are discussed in Lund et al. (1995). For temper-
ature series, we expect changepoints to be easier to de-
tect during summer, when variability is lower, than dur-
ing winter, when variability is higher (see Gullet et al.
1991).

A series could have multiple undocumented chan-
gepoints. Clearly, one could have three or more phases
in (2.1). In practice, one could eliminate the most prom-
inent changepoint first, adjust the series for the mean
shift due to that changepoint, and then successively test
for further changepoints. This process would be re-
peated iteratively until all changepoints are identified.
Alternatively, percentiles for the joint distribution of the
largest and second largest values among F1, . . ., Fn

could be investigated.
The Fmax percentiles in Table 1 were computed for

errors {e t} that are independent and normally distributed
(Gaussian). Due to the Central Limit theorem, normality
is plausible for monthly or yearly series that are aggre-
gated from daily values via summation or averaging. If
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FIG. 7. Chula Vista and reference temperatures. FIG. 9. Chula Vista minus reference residual F statistics.

FIG. 8. Chula Vista minus reference F statistics. FIG. 10. Mauna Loa monthly carbon dioxide concentrations.

{et} is independent but non-Gaussian, then the percen-
tiles in Table 1 are approximations, becoming exact as
n → `. In practice, the Table 1 percentiles are very
reasonable for large n unless the distribution of e t is
heavy tailed (having infinite higher-order moments). A
more serious practical concern involves correlations in
{et}. Heavily correlated errors could change the Table
1 percentiles. It would be a serious endeavor to inves-
tigate dependence of the Table 1 percentiles on auto-
correlations in {e t}; we do not attempt such a study
here.

5. Application of the methods

This section presents two applications of the above
methods to climatic series. Our first application, in-
tended as a base check of the methods, considers a series
where metadata is available. The second application
moves to a more nebulous situation.

The first series we investigate contains temperatures
from Chula Vista, California, for the 78-yr period 1919–
96 inclusive. The annual averages of this data are plotted
in Fig. 3. The accompanying metadata reveal three pos-
sible changepoints during this period. Specifically, the
station began operation in 1919 at longitude 117869,
latitude 328369, at an elevation of 9 ft with a cotton
region shelter with maximum and minimum thermom-

eters. In 1966, the instrumentation was replaced with a
thermograph. In 1982, the station was physically moved
to longitude 117859, latitude 328379, and the elevation
changed to 56 ft. In 1985, the station reverted to using
maximum and minimum thermometers. Hence, chan-
gepoints in 1966, 1982, and 1985 are plausible, although
the station physically moved only once (in 1982).

It is instructive to proceed as if the changepoint times
are unknown. Figure 4 shows the F statistics of the
annual data for the entire 78-yr record. The dashed lines
depict the 95th percentiles of the F3,n24 and Fmax distri-
butions (2.827 and 6.942, respectively). Both the F3,n24

and Fmax 95th percentiles strongly suggest that one or
more changepoints exist. The maximum F statistic oc-
curs at 1975—between the times of the first two can-
didate changepoint times—with Fmax 5 24.36. The es-
timated mean response (an estimate of E[Xt] with c 5
1975) is plotted against the yearly data in Fig. 3; this
piecewise line appears to fit the data well.

The residuals in (4.1) were computed and are plotted
in Fig. 5. The F statistics for this series are plotted in
Fig. 6. The 95th percentile of the F3,n24 distribution is
exceeded by the F statistic at time 1931 whereas the
95th percentile of the Fmax distribution is not exceeded
by any F statistic. Hence, the F3,n24 criteria indicates
another changepoint but the Fmax criteria suggests that
our analysis is complete. There is nothing in the me-
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FIG. 11. Mauna Loa annual F statistics. FIG. 12. Mauna Loa annual residuals (with c 5 1989).

FIG. 13. Mauna Loa annual residual F statistics.

tadata to suggest a changepoint around 1931. In fact,
the reference series comparisons below suggest that the
1931 changepoint is more rooted in chance variation
than an actual changepoint. Overall, one sees the im-
portance of the methods used; specifically, a F3,n24 cri-
teria would lead to more changepoints, which in this
case appear fictitious.

It is instructive to compare the above analysis to that
obtained from reference series comparisons. A reference
series {Rt} was constructed by averaging five nearby
series from stations at Avalon, Cuyamaca, Indio, Irvine,
and Redlands, California. These stations report reason-
ably high quality data during the entire Chula Vista
period of record. This reference series is plotted in Fig.
7 against the Chula Vista data for comparison’s sake.
Notice how the two series track well through the 1970s,
with a change in their relative behavior shortly there-
after. The variability of the reference series is less than
that of the Chula Vista series due to averaging. Of
course, averaging reduces variability in general.

The F statistics for {Xt 2 Rt} are plotted in Fig. 8.
Both F3,n24 and Fmax methods suggest the presence of a
changepoint at time c 5 1981 (very close to the 1982
station location move). The residuals in (4.1) were com-
puted for {Xt 2 Rt} with c 5 1981. Figure 9 plots the
F statistics of these residuals. Here, the F3,n24 95%
threshold is exceeded by four F statistics, whereas the
corresponding Fmax threshold is not exceeded anywhere.
Again Fmax and F3,n24 methods arrive at conflicting con-
clusions, with F3,n24 methods suggesting additional
changepoints. As there is no physically compelling rea-
son to declare a changepoint in the 1930s–40s, or in
1975 (especially in view of the closeby 1981 change-
point), we attribute the exceedence of the F3,n24 thresh-
old to an unrealistic method.

Before continuing, it is worth making some points.
First, if one knows the changepoint times beforehand,
then t- and F-based sample mean differences comprise
good statistical methods (the usual disclaimers on cor-
relations apply). But if the changepoint times are truly
unknown, one should revert to a Fmax paradigm. For
given a long enough series, it is not surprising to find

an arbitrary preset short-length pattern somewhere in
the series, if one is allowed to look anywhere for the
pattern. From Table 1, it is clear that any changepoint
declared by an Fmax method will also be a changepoint
in an F3,n24 analysis. The higher threshold of the Fmax

method precisely accounts for the extra variability due
to the unknown changepoint time. In truth, one has can-
didate changepoint times for the Chula Vista series; a
fair analysis would make use of this information.

Second, the residuals of {Xt} were partitioned into
pre- and post-1975 segments and the residuals of {Xt

2 Rt} were partitioned into pre- and post-1982 seg-
ments. Each of these four segments were analyzed for
additional changepoints. No further changepoints were
found; hence, we omit the details of this analysis. Fi-
nally, it is worth noting that the instrumentation changes
of 1966 and 1985 did not give rise to formal change-
points.

Now consider carbon dioxide concentrations reported
at Mauna Loa, Hawaii, during the 41-yr period 1959–
99 inclusive. Figure 10 displays the monthly values of
this series. Annual averages were computed to eliminate
the periodicities in the series; the F statistics with the
quadratic model in (4.4) were computed for these annual
averages and are displayed in Fig. 11. Justification for
a nonzero quadratic component in this data through the
year 1990 is contained in Lund et al. (1995). There is
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no nearby reference station available for this data over
the entire period of record.

For the Mauna Loa series, an observed Fmax statistic
of 56.02 was obtained. As the trend in this data shows
quadratic behavior, the true null hypothesis distribution
of Fmax is that of 41 dependent F statistics, each of which
has 3 numerator degrees of freedom and n 2 6 5 35
denominator degrees of freedom. The 95th percentile of
the Fmax distribution in this case is 5.67, whereas the
95th percentile of the F4,n26 distribution is 2.64. Both
methods suggest that an unobserved changepoint is pre-
sent in the late 1980s to early 1990s, with the maximum
F statistic occurring at 1989. The estimated mean re-
sponse function for this fit with c 5 1989 is plotted
against the monthly data in Fig. 10 and appears to fit
the data well. Notice that the changepoint is not a dis-
continuity, but rather represents a slowing in the rate of
increase. A continuation of the pre-1990 pattern is plot-
ted in Fig. 10 for comparison’s sake. Whereas the me-
tadata do not suggest a changepoint in the late 1980s
or early 1990s, it is plausible that the effects of the
Mount Pinatubo volcanic eruption are being seen here.
Of course, causes of this changepoint are debatable [see
the Intergovernmental Panel on Climate Change’s report
(IPCC 2001) for additional discussion].

Figures 12 and 13 display the annual residuals [ver-
sions of { } computed with the quadratic response inX*t
(4.4) and c 5 1989] and their corresponding F statistics.
As no F statistic for the residual series exceeds the 95th
Fmax percentile, one concludes that the piecewise qua-
dratic trend response in (4.4) with c 5 1989 is reason-
able and that there are no further changepoints in the
data. One should note that use of the F criteria, rather
than an Fmax criteria, would lead to the inclusion of
additional unwarranted changepoints.

6. Conclusions

Use of the F3,n24 criteria can lead to inclusion of many
undocumented changepoints that are, in truth, fictitious.
We believe that this has indeed happened with many
temperature and climate series. We suggest that series
for which undocumented changepoints have been de-
tected by the F3,n24 criteria be reevaluated using the Fmax

criteria of this article.
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